Maths Chapter 11 - Constructions

- Constructions Exercise 11.1

1. Construct an angle of 90° at the initial point of a given ray and justify the construction.

Construction Procedure:

To construct an angle 90°, follow the given steps:

1. Draw a ray $O A$
2. Take O as a centre with any radius, draw an arc $D C B$ is that cuts $O A$ at B.
3. With B as a centre with the same radius, mark a point C on the arc DCB.
4. With C as a centre and the same radius, mark a point D on the arc DCB.
5. Take C and D as centre, draw two arcs which intersect each other with the same radius at P.
6. Finally, the ray OP is joined which makes an angle 90° with OP is formed.

Justification

To prove $\angle \mathrm{POA}=90^{\circ}$
In order to prove this, draw a dotted line from the point O to C and O to D and the angles formed are:

From the construction, it is observed that
$O B=B C=O C$

Therefore, OBC is an equilateral triangle
So that, $\angle B O C=60^{\circ}$.

Similarly,
$O D=D C=O C$

Therefore, DOC is an equilateral triangle
So that, $\angle D O C=60^{\circ}$.
From SSS triangle congruence rule
$\triangle O B C \cong O C D$

So, $\angle \mathrm{BOC}=\angle \mathrm{DOC}$ [By C.P.C.T]
Therefore, $\angle \mathrm{COP}=1 / 2 \angle \mathrm{DOC}=1 / 2\left(60^{\circ}\right)$.
$\angle C O P=30^{\circ}$
To find the $\angle \mathrm{POA}=90^{\circ}$:
$\angle \mathrm{POA}=\angle \mathrm{BOC}+\angle \mathrm{COP}$
$\angle \mathrm{POA}=60^{\circ}+30^{\circ}$
$\angle \mathrm{POA}=90^{\circ}$

Hence, justified
2. Construct an angle of 45° at the initial point of a given ray and justify the construction. Construction Procedure:

1. Draw a ray $O A$
2. Take O as a centre with any radius, draw an arc DCB is that cuts $O A$ at B.
3. With B as a centre with the same radius, mark a point C on the $\operatorname{arc} D C B$.
4. With C as a centre and the same radius, mark a point D on the $\operatorname{arc} \mathrm{DCB}$.
5. Take C and D as centre, draw two arcs which intersect each other with the same radius at P.
6. Finally, the ray OP is joined which makes an angle 90° with OP is formed.
7. Take B and Q as centre draw the perpendicular bisector which intersects at the point R
8. Draw a line that joins the point O and R
9. So, the angle formed $\angle R O A=45^{\circ}$

Justification

From the construction,
$\angle \mathrm{POA}=90^{\circ}$

From the perpendicular bisector from the point B and Q , which divides the $\angle \mathrm{POA}$ into two halves. So it becomes
$\angle \mathrm{ROA}=1 / 2 \angle \mathrm{POA}$
$\angle \mathrm{ROA}=(1 / 2) \times 90^{\circ}=45^{\circ}$
Hence, verified
3. Construct the angles of the following measurements:
(i) 30°
(ii) $22 \frac{1^{\circ}}{2}$
(iii) 15°

Solution:

Solution:
(i) 30°

Construction Procedure:

1. Draw a ray $O A$
2. Take O as a centre with any radius, draw an arc $B C$ which cuts $O A$ at B.
3. With B and C as centres, draw two arcs which intersect each other at the point E and the perpendicular bisector is drawn.
4. Thus, $\angle E O A$ is the required angle making 30° with OA .
(2.)22.5 ${ }^{\circ}$

Construction Procedure:

1. Draw an angle $\angle P O A=90^{\circ}$
2. Take O as a centre with any radius, draw an arc $B C$ which cuts $O A$ at B and $O P$ at Q
3. Now, draw the bisector from the point B and Q where it intersects at the point R such that it makes an angle $\angle R O A=45^{\circ}$.
4. Again, $\angle \mathrm{ROA}$ is bisected such that $\angle \mathrm{TOA}$ is formed which makes an angle of 22.5° with OA
(3) 15°

Construction Procedure:

1. An angle $\angle D O A=60^{\circ}$ is drawn.
2. Take O as centre with any radius, draw an arc $B C$ which cuts $O A$ at B and $O D$ at C
3. Now, draw the bisector from the point B and C where it intersects at the point E such that it makes an angle $\angle E O A=30^{\circ}$.
4. Again, $\angle E O A$ is bisected such that $\angle F O A$ is formed which makes an angle of 15° with OA.
5. Thus, $\angle \mathrm{FOA}$ is the required angle making 15° with $O A$.
